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Stationarity

Stationary Time-Series

Stable Mean & Variance

Definition

e Stationarity refers to the stability of a
sequence over time.

e Aseries is called stationary if its o
statistical characteristics do not Non-Stationary Time-Series
change over time.

e Most classic time-series models (AR,
MA, ARMA, ARIMA) assume the data
Is stationary.

Value

Time
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Stationarity

Weakly Stationary Time Series
(constant mean and variance)

Value

Two common notions of stationarity: & M

e Strict Stationarity: " | ﬁ
o The entire distribution of the series
IS Invariant over time Time
e Weak (Covariance) Stationarity Non-Stationary Time Series
o Mean is constant over time YRR MEAR A anas)
o Variance is constant over time
o Autocovariance depends only on
lag, not on time
e Most time-series models assume weak
stationarity

Value

o
1

Time
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Stationarity

Two common notions of stationarity:
e In weak Stationarity:
o Mean is constant over time
o Variance is constant over time
o Autocovariance depends only on
lag, not on time

E[Xt] = H vt
Var(X;) = 0%, Wt

Cov(X;, Xiyn) = v(h)

Time-series

Stationary Time Series (Autocovariance Depends Only on Lag h)

3
gl . X - ! o i .
3
g h h
Constant Mean,
Constant Variance
t t+h s s+h
Time (t)
| Cov(Xt, Xesh) = Cov(Xs, Xs4n) = y(h) for all t, s
Non-Stationary Time Series (Autocovariance Changes Over Time)
<
4]
32
=
Changing Mean,
Changing Variance
t t+h s s+h
Time (t)

[Cov(Xt, Xt+hn) 7= Cov(Xs, Xs4+p) (Depends on both t and h)
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Stationarity

Stationary Time Series Non-Stationary Time Series
(Xt = St) (Xt = 0.05t + 8t)
Two common notions of stationarity:
4..
Stationary Time Series
e Model: z; = & o
e Constantmean: u =0 ﬁ w
« Constant variance: o> = 1 = oL UL LI a 1
« No trend over time 3 M Q
Non-Stationary Time Series
-2
e Model: z; = 0.05t + Et
e Mean changes over time
e Presence of deterministic trend 4.
¢ Violates stationarity assumption [u =0,0%=1 (constant)] [Mean increases over time]
0 20 40 60 80 100 0 20 40 60 80 100
Time (t) Time (t)
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Stationarity

: : : i o
Two common notions of stationarity:
e Based on the figure, which series is stationary 34 34
and which is non-stationary? ol o
e For each series, comment on:
o Mean behavior over time = L
o Variance behavior over time . -
e Propose possible mathematical model for $ =
each series. ] N
e \Which series violates the stationarity 2- 2-
assumption required by AR / MA models?
Explain why. o =
-4 - Constant mean, constant variance -4 -| Mean decreases over time
(T) 2T0 410 6]0 STO 1(I)O 1&0 (l) 2:) 45 6:) 8‘0 1(T)0 150
Time (t) Time (t)
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Time-series

Two common notions of stationarity:

Question 1

Which series is stationary and which is non-stationary?

¢ Series A: Stationary

e Series B: Non-stationary

Question 2

Mean and variance behavior

Series A

e Mean: constant over time (= 0)
e Variance: constant

¢ Fluctuations are symmetric and stable

Series B

¢ Mean: changes over time (downward trend)
e Variance: approximately constant
e Presence of deterministic trend

Stationarity

Series A — Stationary
(Xt = &)

Value (x;)
o
f

Constant mean, constant variance

I I I ! I I I

0 20 40 60 80 100 120

Time (t)

Value (x;)

Series B — Non-Stationary

(xy = =0.03t + &)

4

Mean decreases over time
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Time (t)




Stationarity

Series A — Stationary

Series B — Non-Stationary

Two common notions of stationarity: (x = &) (x; = —0.03t + &)
4 4
Question 3
Possible mathematical models e o1
e Series A:
2 2
Tt = E¢, Et ~ N(O, 1)
17 17
e Series B: - .y
X 3
Ty = —0.03t + Ety Epr~ N(O, 1) g 0T T S 0
S S
_1 — _1 L
Question 4
-2 - _2 =
Which series violates stationarity and why?
e Series B violates stationarity 3 e
e Because:
]E[xt] — —0.03¢ -4 - Constant mean, constant variance -4 | Mean decreases over time
I | | | | I I I | I | I | I
0 20 40 60 80 100 120 0 20 40 60 80 100 120

depends explicitly on time
Time (t)

&J Mean is not constant - non-stationary

Time-series

Time (t)
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Unit Root Tests

Why Do We Need Unit Root Tests?

+3

Visual inspection is not sufficient

Some non-stationary series look stationary
Unit root causes persistent shocks +1 -
Formal statistical testing is required

+2

Value (x;)
o
|

T T T T T T T
0 20 40 60 80 100 120

Time (t)
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Unit Root Tests

Why Do We Need Unit Root Tests?

e Review this figure: +3
o Small amplitude of oscillation (low
noise variance) +2
o There is no clear trend in the short
term. +1 7
o Fluctuating around a "seemingly X
stable" level. E 9
e However: This is a non-stationary series > 4
o Mathematical model
Ty = i1+ €t -2
e This is a random walk, with: 3 =
. | | | | | | |
o Unit root 0O 20 40 60 8 100 120

o Without string pull, the Time ()
mean returns to zero.
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Unit Root Tests

What Is a Unit Root? Unit Root Process (Random Walk)

e Consider an AR(1) process: : = T 1 + & 101

e The process has aunitrootif: ¢=1
e In this case: o
Tt = Tt—1 + Et
(
h

o The series becomes a random walk

o Shocks have permanent effects

o Mean and variance are not 51
time-invariant

Value (x;)
(&)

-10 1

-15 1

0 50 100 150
Time (t)
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Unit Root Tests

What is being tested?

e \Whether a time series is stationary or contains
a unit root
e Focus on the stochastic trend in the data
e Hypotheses
o Null hypothesis (Ho): The series has a
unit root (non-stationary)
o Alternative hypothesis (H:): The series
Is stationary
e Common unit root tests
o ADF (Augmented Dickey—Fuller)
o KPSS (reverse hypothesis)

Time-series

UNIT ROOT TESTS: Testing for Stationarity

STATIONARY NON-STATIONARY
(H,: Alternative) (Ho: Null, Unit Root)
Mean-Reverting, Stable Variance Stochastic Trend, Unstable Mean/Variance
A A
- i 3
Focus: 2 Focus:

@ Absence of Tf‘s"".g for d Presence of @
Stochastic Trend Stochastic Tren Stochastic Trend
HYPOTHESES & TESTS
Hypotheses (Hy & H,) | Common Unit Root Tests

Hp: Unit Root (Non-Stationary) ADF (Augmented Dickey—Fuller)

- Series has a stochastic trend. - Tests for Hq (Unit Root).

H,: Stationary KPSS (Kwiatkowski—Phillips—Schmidt—Shin)

- Series is mean-reverting. - Tests for Hy (Stationarity) [Reverse
Hypothesis].

Note: Tests evaluate the presence of a unit root, which indicates a non-stationary stochastic trend in the data.
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Augmented Dickey—Fuller (ADF) Test

Purpose

e Test whether a time series has a unit root

e Extension of the Dickey—Fuller test to handle autocorrelation

Test equation

P
Ay = yyp-1 + Z AN

Hypotheses

* Ho: v = 0 - unit root (non-stationary)

e H;:y < 0 - stationary
Key idea

» Test the significance of 7y

e Uses non-standard critical values

Time-series

Unit Root Tests ADF intuition

Unit Root Process: Permanent Shock

(O]
2 Shock Permanent Shift
(]
>
tshock
Time
Stationary Process: Transitory Shock
Q Bhok Decay to Mean
S
1:shock
Time

Where:

o Auy;: first difference of the series

e y; 1:lagged level (unit root term)

e ~y:unit root coefficient (key parameter)

o Ay, ;:lagged differences (augmentation terms)
e p:number of lags

e &;: white noise error
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Unit Root Tests

Augmented Dickey—Fuller (ADF) Test

Current state of the system

~ The level the series was at previously

“Augmented” part

Ayt = Yt — Yt—1 : First-order difference of a series
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Unit Root Tests

Augmented Dickey—Fuller (ADF) Test

Parameters to be tested

Answer the question: "When the trend is at a high,
does it tend to reverse or continue further?”

p
Ay, :@yt—l + Z 0 Ay + &
i=1

¢ = (): No pull-back — Random walk
e The entire ADF test only tests a single

hypothesis' Hy:v=0 e < 0: with pull-back — Mean-reverting
. 0 - s

* Y>> 0: Explosive sequence

Time-series
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Unit Root Tests

—— SUNACTIVITY

1754

Augmented Dickey—Fuller (ADF) Test :

1254

17

0

from statsmodels.tsa.stattools import adfuller

100 4

751

def adf_test(timeseries): 5]
print(“Results of Dickey-Fuller Test:") &
dftest = adfuller(timeseries, autolag="AIC") ]
dfoutput = pd.Series( o
dftest[6:4], 720 o 1620 2870 1520 1970
1nde§;ést Statistic”, Results of D%ckey-Fuller Test:
“p-value" Test Statistic -2.837781
"#Lags Used", p-value 0.053076
"Number of Observations Used", #Lags Used : 8.000000
‘ Number of Observations Used 300.000000
) - Critical Value (1%) -3.452337
. , Critical Value (5%) -2.871223
for key, value in dftest|4].items(): Critical Value (10%) _5.571929

dfoutput|“Critical Value (%s)" % key]| = value

print(dfoutput) dtype: float64
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Unit Root Tests

Augmented Dickey—Fuller (ADF) Test

Results of Dickey-Fuller Test: Y
Test Statistic
p-value 0.053076
#lLags Used 8.000000
(’/’;‘;gfit;ffggtz C;g",‘;‘f’ Number of Observations Used  300.000000
oot) Critical Value (1%) -3.45233
Critical Value (5%) -2.871223
Critical Value (10%) -2.571929

dtype: float64
Threshold provided by Dickey-Fuller
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Unit Root Tests

KPSS Test (Kwiatkowski—Phillips—Schmidt—Shin)

e KPSS tests stationarity directly, not unit root.

e \Whether a time series is stationary around a
level or a trend.

e Hypotheses:

e Hj: The series is stationary

e Hj: The series is non-stationary (has unit root)

e Refer code example

Time-series

KPSS Test (Kwiatkowski—Phillips—Schmidt-Shin)

for Stationarity

20 1

18 1

16

141

121

10 1

HO: Trend Stationary
(Null Hypothesis)

0 20 40 60 80 100

Series is stationary around
a deterministic trend.

b

Ha: Unit Root (Non-Stationary)
(Alternate Hypothesis)

0 20 40 60 80 100

%

Series has a unit root,
not stationary.

N

>

KPSS_test(time_series) = p-value

Function created to evaluate stationarity evidence.
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https://www.kaggle.com/code/trongnghia7171/stationarity-and-detrending-adf-kpss
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Ditferencing

Differencing

Goal:
Remove unit root and make the series stationary.
First-order differencing:
Ay =y — Y1
Higher-order differencing:

A%, = (1— L)%y

Key idea:
e Differencing removes stochastic trend

e Transforms non-stationary = stationary

e Refer code example

Time-series

Value

204

154

101

Effect of Differencing on a Uni

t Root Process

Random Walk with Drift (Non-Stationary)

First Differences (Stationary)

1.0

Differenced Value

Vw“w

0 20 40 60 8 100
Time

120 0O 20 40 60 80 100
Time
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https://www.kaggle.com/code/trongnghia7171/stationarity-and-detrending-adf-kpss

Differencing e
Differencing |
Before:
Results of Dickey-Fuller Test: =)
Test Statistic -1.486166e+01 d
zlvaluﬁ q %' géggzge—gg sunspots| "SUNACTIVITY_diff"] = sunspots|"SUNACTIVITY"] - sunspots|"SUNACTIVITY"].shift(
ags Use : e+ 1
?:{T:igagfvg?ﬁ: r\(,igtsl)-'ons Used ; ; gggggg::g; iunspots[ "SUNACTIVITY_diff"].dropna().plot(figsize=(12, 8))
Critical Value (5%) -2.871223e+00
Critical Value (10%) -2.571929e+00

dtype: float64

After: \n/\/w

Time-series Trong-Nghia Nguyen

e Refer code example



https://www.kaggle.com/code/trongnghia7171/stationarity-and-detrending-adf-kpss
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AR/ MA /ARMA Models

e After differencing, many time series become

stationary
e Stationary series still exhibit temporal
dependence
e AR /MA/ARMA models:
o Capture short-term memory

o Describe how the present depends on:

m pastvalues
m past shocks
e They form the foundation of ARIMA models

Time-series

Value (x)

Stationary Time Series with
Temporal Dependence

Past values influence
current value

Time (t)
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AR/ MA /ARMA Models

: P,
Autoregressive (AR) Model
¢
e An AR model explains the current value of a time series using its own past values. u 8('()
Q3

e The idea is that the series has memory: past observations influence the present.

e Suitable for stationary time series.

AR(p) model:

Autoregressive Dependence

P
mt=C+E dizi_ i + € A
e

Where:

Value

e x;:value attimet
e p:order of the AR model

e ¢;: autoregressive coefficients

e £¢: white noise

Trong-Nghia Nguyen
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AR/ MA /ARMA Models

Sunspots Time Series

75

Original:

Sunspot Activity

Autoregressive (AR) Model

from statsmodels.tsa.ar_model import AutoReg 4 % & = o = 55
Time

# train

model = AutoReg(ts_diff, lags=1)

result = model.fit()

Differenced Sunspots Time Series

print(result.summary())
100 4
801

AutoReg Model Results Sl

40 A

Dep. Variable: SUNACTIVITY No. Observations: 308 . . 20+1
Model: AutoReg(1)  Log Likelihood -1358.217 D |ffe renci ng Do
Method: Conditional MLE S.D. of innovations 20.191 -201
Date: Mon, 26 Jan 2026  AIC 2722.434 _a0
Time: 15:15:14 BIC 2733.615 &
Sample: 1 HQIC 2726.905 0 50 100 150 200 250 300
308
coef std err z P>|z| [0.025 0.975]

100 { — Observed :
const -0.0308 1.152 -0.027 0.979 -2.289 2.228 go L2 Forecast |
SUNACTIVITY.L1 0.5412 0.048 11.278 0.000 0.447 0.635 604 i

Roots

_ 40 :
Real Imaginary Modulus Frequency 201 |

1 . 01
AR.1 1.8476 +0.0000j 1.8476 0.0000 ForcaStlng " -201 i
a0 i
—60 i
e Refer code example 2 ; = e e = = ="
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https://www.kaggle.com/code/trongnghia7171/ar-ma-arma-models

AR/ MA /ARMA Models

Moving Average (MA) Model

* An MA model explains the current value of a time series using past error terms (shocks).
e The idea is that the series reacts to unexpected disturbances, not past values.

e Suitable for stationary time series. MOVing Average (MA) Model

MA(q) model:
: £(t-1)—21
Tt = M1+ E+ Zozft-i
i=1
+

Where: S(t)

e x;:value attimet 92

e u:mean of the series e(t-2).

€t: white noise (random shock)

q: order of the MA model
0;: moving average coefficients

Trong-Nghia Nguyen
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AR/ MA /ARMA Models

Stationary Time Series (MA Model Process)

Moving Average (MA) Model

from statsmodels.tsa.arima.model import ARIMA

Value x(t)
o
-_>—
—
i
=T

# MA(q) is ARIMA(@, 0, q)
model = ARIMA(ts_diff, order=(@, 0, 1))
result = model.fit()

print(result.summary())

Time (t)
Forecast Driven by Past Shocks
MA trong statsmodels = ARIMA(0,0,q) g(t-1) £(t)
A A
Trong ARIMA: mce on x(t)] \Influence on x(t)
e p - AR part
e d - differencing
e g > MA part
Do do:
MA(q)= ARIMA(0,0,q)
Nghta la:
t-1 t

¢ Khong dung gia tri qua kh(
¢ Khong differencing
« Chi dung q sai s6 qua kh(r

Trong-Nghia Nguyen
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AR/ MA /ARMA Models

Autoregressive (AR) vs Moving Average (MA)

Aspect AR Model MA Model
core id | . Autoregressive (AR) Moving Average (MA)
ore idea Uses past values Uses past shocks

P ? Model Model
Memory Long-term memory Short-term memory
Mathematical form T, =) Py i+ & T, =€+ Y, 0;6_; @
Dependency Past observations Past errors @

V
2\ [X
Interpretation Persistence Shock absorption °
Typical use Trend-like persistence Noise-like series
. Present value connected Present value formed by
ACF pattern Tails off Cuts off to multiple past values averaging past random shocks
(Memory Chain) (Noise Signals)

PACF pattern Cuts off Tails off
Stationarity required Yes Yes
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